
Exploring a Framework for Identity and Attribute Linking
Across Heterogeneous Data Systems

Nathan Wilder
University of Tennessee

Knoxville, Tennessee
nwilder@vols.utk.edu

Jared M. Smith
University of Tennessee

Knoxville, Tennessee
jms@vols.utk.edu

Audris Mockus
University of Tennessee

Knoxville, Tennessee
audris@utk.edu

ABSTRACT
Online-activity-generated digital traces provide opportuni-
ties for novel services and unique insights as demonstrated
in, for example, research on mining software repositories.
The inability to link these traces within and among systems,
such as Twitter, GitHub, or Reddit, inhibit the advances in
this area. Furthermore, no single approach to integrate data
from these disparate sources is likely to work. We aim to
design Foreseer, an extensible framework, to design and eval-
uate identity matching techniques for public, large, and low-
accuracy operational data. Foreseer consists of three func-
tionally independent components designed to address the
issues of discovery and preparation, storage and representa-
tion, and analysis and linking of traces from disparate online
sources. The framework includes a domain specific language
for manipulating traces, generating insights, and building
novel services. We have applied it in a pilot study of roughly
10TB of data from Twitter, Reddit, and StackExchange in-
cluding roughly 6M distinct entities and, using basic match-
ing techniques, found roughly 83,000 matches among these
sources. We plan to add additional entity extraction and
identification algorithms, data from other sources, and de-
sign tools for facilitating dynamic ingestion and tagging of
incoming data on a more robust infrastructure using Apache
Spark or another distributed processing framework. We will
then evaluate the utility and effectiveness of the framework
in applications ranging from identifying malicious contribu-
tors in software repositories to the evaluation of the utility
of privacy preservation schemes.

CCS Concepts
•Information systems → Data mining; Information
extraction; •Software and its engineering→ Domain
specific languages; Development frameworks and en-
vironments;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BIGDSE’16, May 16 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4152-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896825.2896833

Keywords
Entity Extraction, Entity Identification, Identity Linking,
Domain Specific Language, Big Data Architecture

1. INTRODUCTION
Imagine if you could open your browser, head to a web-

site, and type in the name of an entity, whether that is a
friend, foe, government, company, or even yourself, and im-
mediately upon hitting a button, see the path of that entity
across the entirety of the open internet. Social media ac-
counts, comment histories, notable life events, blog posts,
owned domains, personal businesses - all data a user has
publicly shared about themselves returned from a name or
alias. Foreseer, a framework for identity and attribute link-
ing across heterogeneous data systems, aims to realize that
potential. By accessing cross-domain, open data sources
through one consistent interface in the form of a Domain
Specific Language; the framework should assist in building
powerful and quickly-scripted analysis against this collective
knowledge. The framework should also be flexible enough
for a broad range of identity and user-activity-based appli-
cations and a broad range of source data types, such as a
real-time API or a static data dump. The Foreseer frame-
work is aimed at very large datasets, so scalability and dis-
tributed stability were also architecture requirements. The
design calls for a broad set of analysis primitives to help
users take advantage of this architecture, and an extensi-
ble API for additional user-built modules to accommodate
domain or source specific analytic needs.

1.1 Motivation
Limited academic or public research appears to exist for

solving the problem of linking entities among heterogeneous
data sources. The undeveloped nature should allow us ample
room to innovate in this area. Since Foreseer is particularly
targeted at intelligence collected and correlated across mul-
tiple sources, it has the potential to provide insights over a
broader and more comprehensive range than a single source
or single method analysis system. For example, to fully un-
derstand a person’s openly-shared public life, one will prob-
ably glean one set of information from their Twitter activi-
ties and another set, with non-trivial differences, from their
Reddit activities. Each facet of someone’s public internet
behavior could be added to a collection that would likely
provide a more complete picture. The purpose of Foreseer
is to provide a framework to perform this linking especially
where there may not be a clear connection between identi-
ties. It is unlikely for there to be a single way to do this

multi-source identity extraction, identification, and linking;
therefore, we chose to focus on creating an extensible frame-
work.

We considered a number of applications that might be
supported by this framework. Given the assumption that
each new link will bring with it an additional set of iden-
tity attributes and activity traces, modeling interactive user
behavior with multi-sourced data seems to enhance a wide
range of tasks. These may include product recommenda-
tions based on a user’s discussed or demonstrated prefer-
ences; personalized search results and text auto-completion
that considers not only previous user searches but also any
word groupings he or she has publicly used; identity theft
prevention by requesting additional authentication factors
when current behavior does not match past user behavior;
support of anonymous reporting via alternate phrase sugges-
tions that discourage author attribution; privacy assistance
by highlighting potentially revealing data; or id of poten-
tially malicious users whose activity matches that of pre-
vious trolls, spammers, or malware authors. The specific
target application chosen for the evaluation of Foreseer and
discussed in this paper is the discovery of vulnerabilities in
open source applications and then connection of the entities
responsible back to any other online presence they use. This
target application can be divided into two tasks. One task
is vulnerability discovery, which will be addressed in later
phases of this project. The second task is the linking of re-
sponsible user identities to accounts they may have on other
online systems. Linked accounts may also shed some light
upon the intent of any involved developers.

2. RELATED WORK
Although the benefits of cross-domain identity linking ap-

pear to be obvious, we were able to find surprisingly few pub-
lications on the subject. Most take approaches that focus
on a single aspect or method for ascertaining identity. The
related work can be roughly subdivided into username-only
analysis, social connection analysis, author attribution via
text analysis, and multi-aspect analysis through the various
elements provided on a user information page (sometimes
also called a profile page).

2.1 Username Analysis
Much of the work done focuses on usernames, likely be-

cause it relates to identity in an obvious way. One example
is Perito et al. [18], who used exact and substring username
matching combined with an assessment of the randomness of
the username. Some researchers, such as Zafarani et al. [20],
used behavioral choices in username selection as the basis for
linking, which includes exact matches as well as substring
and more general pattern matches (like name length or char-
acter range). Perito’s team saw accuracy of around 78%,
while Zafarani’s group achieved 92% accuracy. Zafarani et
al. also assessed exact username matching, substring match-
ing, and letter patterns as solitary approaches with accu-
racy rates of 77%, 63%, and 49% respectively. These meth-
ods are limited by the fact that many people will proba-
bly be ’invisible’, simply because they chose site-differing or
very common usernames. Other username disambiguation
research considers the username along with similar types
of data such as email addresses. In Goeminne et al. [12],
the researchers looked at using several different algorithms
that used usernames, email addresses, first and last names,

and public key certificate data to find duplicate identities
in open-source software projects. This type of approach re-
lies heavily on email addresses, which are often not available
for many non-software-repository sources. And even when
all data is present false positives are a significant issue (and
become more problematic the more common a name is).

2.2 Social Connection Analysis
Other researchers took a connection or relationship based

route to identity linking. Golbeck et al. [13] used graphs of
social connections to link users across sites. Of the roughly
4 million accounts reviewed, about 8,000 had accounts on
multiple sites. Combined with limited friendship data this
resulted in less than 100 linked accounts for most of the 55
site-to-site pairings but between 100 and 1000 in 7 cases
and over 1000 in two cases. In another research endeavor,
the activity-profile-based approach described by Mockus [17]
was used to identify relationships between mentors and suc-
cessors. Some of these identified mentors and successor
pairs are likely to be the same person using different IDs,
while other genuine mentor-successor pairs likely preserve
this functional relationship across multiple systems.

2.3 Authorship Analysis
Several researchers have delved into the work necessary

to link authors to their works. de Vel et al. [11] attributes
emails to their authors with 90.5% average accuracy. Zheng
et al. [21] used a long list of features extracted from online
messages and was able to achieve accuracy of 97% for En-
glish and 88% for Chinese. Caliskan-Islam et al. [8] took on
the related problem of linking programmers to their com-
piled code. Although, Caliskan-Islam’s group were able to
get accuracy above 90% for programmer groups of up to 20,
the accuracy dropped to 51% for a group of 600. While
there seems to be value in authorship analysis, text analysis
approaches must be considered against its inherent limits.
Author discovery requires significant training samples (in
size or quantity, preferably both) and the minimum block
size of attributable text (for a given confidence level) is not
always clear. Also, writing variation across source systems,
audiences, and topics does not seem to have been evaluated
thoroughly if at all. (de Vel’s team did look at a few topics,
but got cross-topic individual author results ranging down
to 60%.)

2.4 Multi-aspect Identity Analysis
Of all the body of related work, two particular projects are

somewhat closer to the types of applications we are aiming
to facilitate with Foreseer. The first is analysis done by Mal-
hotra et al. [16] This research assessed likelihood of identity
matches across sites by using the presence of various user
elements like a profile picture, display name, and descrip-
tion along with analysis tuned to the element type (such as
one method with display-names, another for descriptions,
and another for images). This team reached 67% accuracy
for an identity’s highest confidence match and 75% accuracy
within the top 3 matches. The second research effort was
by Jain et al. [14] This team evaluated user content (such
as posted text), attributes (like usernames), and social con-
nections in order to find common identities across Twitter
and Facebook. Using an evaluation sample of 543 Twitter
users, the group was able to find a correct Facebook account
39% of the time. With each of these research teams, the fo-

cus was on the individual analysis methods rather than a
framework within which to run them and aggregate their
results.

2.5 Data Processing Frameworks
Another way to view work related to Foreseer is from

the framework rather than the potential application per-
spective. The world of big data is populated with numer-
ous frameworks, platforms, and architectures. These tools
range from low level processing interfaces to highly abstract,
application-specific models. At the lowest level exists the
data storage and access platforms, of which Hadoop [6] is
probably the most well known. Above this one will find
generalized data processing platforms like MapReduce [5],
Spark [2], and Storm [3]. Encapsulating the general data
processing, one usually finds pipeline and data/query ab-
straction frameworks such as Crunch [1], Cascading [10],
Pig [7], or Hive [4]. And finally at the highest level, toolk-
its seem to be either methodology based (machine-learning,
graphing), media/format based (image, stream processing),
or domain-specific (scientific data processing).

The Foreseer framework targets analysis of the user activ-
ity traces of an application, with the intention of enabling
identity linking. This analysis domain is built with a range
of methods, and runs against data in a wide variety of for-
mats. We are not aware of any current frameworks within
this division of data processing. The nearest frameworks
may be the Semantic Web projects that provide environ-
ments and toolkits to link text-based entities over different
sources of written data. Volz et al. [15] designed Silk, a
Linked Data integration framework. Linked Data is Seman-
tic Web information tagged with standardized labels. Silk
uses an XML markup language for configuration. The tool
pulls data from its sources using RDF (Resource Description
Framework, the metadata format for Linked Data) paths,
applies a metric or custom comparison function, and stores
matching results. Ceccarelli et al. [9] built the Dexter entity-
linking framework. Unlike Silk, this team used a modular
design - retrieval modules for each source and system mod-
ules for core linking, statistical evaluation, utility functions,
and a REST API. Dexter’s configuration and control are
done via the API. The Dexter linking process involves re-
trieving data, translating it into a common JSON schema,
extracting potential entities, and analyzing known entities
that may result in links. One other entity connecting sys-
tem was developed by Weichselbraun et al. [19] and named
Recognyze. Recognyze uses three stages to reach its results -
access and query of unstructured data, extraction of named
entities using a library of rule-based analyzers, and discov-
ery of links to public Linked Data entities. Despite some
similar aspects, these entity linking tools differ in a several
ways from Foreseer. They all work with extracting enti-
ties (essentially keywords) from text only. This textual data
may need to be structured in a standard format (like RDF),
and the range of methods supported is only what is needed
for these limited value types. These systems do not use (or
need) any kind of behavioral or activity-based models.

3. APPROACH
We have targeted the Foreseer framework to support link-

ing identities with various data processing applications. Such
applications typically involve data discovery, understanding,
and analysis. Foreseer follows that modular design. Data

discovery entails collection of information from a desirable
source. However, to allow for data and model reuse, we
propose that this information should not just be retrieved
and stored as static values void of context. Instead the
data should be viewed as dynamic traces in a data ecosys-
tem. The stored information should be held with metadata
that gives insight into its source provenance, location, di-
rection, and role. Data understanding is the translating
or mapping of a source’s system model and schema onto
a common abstraction. Such an abstraction can allow anal-
ysis to be performed against like elements and attributes
across sources. And finally data analysis is the evaluation
of source knowledge by machine learning and other analytic
techniques. This analysis is intended to reveal relationships
among specific traces or data groupings. This design leads
to a high-level pipeline architecture built with three main
components. These three Foreseer components are Seer, Ob-
sidian, and Scry as shown in Figure 1 and described in the
following sections.

3.1 Seer
Seer implements data collection operations against a sin-

gle application or system, such as Twitter. Based on a pro-
vided structure, it assists with exploring the structure and
actual data generated by a system. And it uses that struc-
ture to locally store and provide access to the source traces.
Other components may then access this information through
Seer. Data analysis workflows often begin with a series of
retrieval and database insertion scripts. These scripts are
capable of customization to support heterogeneous sources,
and may be optimized for the exact data needs of a specific
analysis question. However, this approach requires roughly
the same effort for each additional data source. It also may
need a significant re-write if the analysis approach or tar-
get features change. And it pushes an idea of the data as a
static entity instead of a dynamic one.

While one might view a single data item, say a tweet, as
more or less a static datum once posted. But to generalize
that view and see Twitter as just a collection of tweets may
miss the rich relationships induced by readers, other entities,
and events. Each tweet is information that represents some
other data consumed by the author and now transformed
into the user’s text. That tweet may in turn be read by oth-
ers who are then inspired to write their own tweets. There
are many detectable traces of this data ecosystem beyond
the posted content itself such as tweet timestamps, user lo-
gin or last activity times, parent tweets (for replies), re-tweet
meta data, earlier tweets with the same hashtag, and recent
trending hashtags. The role and other description of these
traces relative to the larger system creates a kind of data
ecosystem model. And that model may well be accurate in
its structure even if it cannot determine the path of every
data particle that traverses it. We suggest that this idea of
a data ecosystem can provide a reusable abstraction of each
source that may be applied to a wide range of analysis tasks
within identity-related data mining.

To facilitate this dynamic view, the Seer component is
designed to retrieve, clean, and insert information into lo-
cal database caches or other parts of the Foreseer process.
Information from a source may be collected continuously,
pulled periodically with scheduled tasks, or downloaded as
needed. Seer sources with their dynamic ecosystem models
are defined using the source description portions of the Fore-

Figure 1: Foreseer Architecture Diagram. 1

seer language and, like other framework settings, entered by
using the JSON configuration format. Complex source tasks
may be handled by setting appropriate parameters to refer
to user-provided modules (currently Python scripts). Thus,
for existing analysis jobs translated into Foreseer, original
retrieval scripts may still exist in some form. But these
prior scripts should now be able to take advantage of code
reuse and should be transformed to collect the data using a
dynamic system model.

For the initial iteration of the project, static retrieval
scripts were used. These scripts then became starting points
for evaluating the ongoing design of Seer. This is our plan
for the Seer component and encompasses both some imple-
mented portions and the larger infrastructure still being de-
veloped. Once realized, Seer will be able to ingest both stale
and streaming data locations for a single source (e.g. a data
dump and the Streaming API for Twitter). Seer will merge
the data schema from each location (as per the user pro-
vided source description) and present a single view to other
components. With the data sources we have encountered,
there are often many ways to discover their traces, and each
way may provide different portions of the total system data.
This feature of a unified view should also assist with those
sources whose access method results in different users receiv-
ing different views of that data. For example, Google search
results may differ between two search scripts with different
IPs or different API users.

3.2 Obsidian
The dynamic data systems presented by Seer may produce

1For a larger version, see the architecture dia-
gram on the web at http://web.eecs.utk.edu/∼
jms/foreseer/architecture diagram.png

copious amounts of information - all of it with the labels
(field/column names, type names, table/collection names,
etc) and models (entity models and relationships, explicit
links between data entities, etc) of a single source. In or-
der to take that specific information and apply it to anal-
ysis working with dissimilar sources, it must first be trans-
lated into a common form. This translation is performed
by a component called Obsidian. The module maps source-
specific labels to common Obsidian ones. For example, one
source may have a column called user, another username,
another may use email for the same purpose, and another
may just use name. Obsidian may map them all to a user-
name role. Some source labels may even translate to mul-
tiple Obsidian attributes. For example, in some sources the
aforementioned email may translate to both a username and
an email. For now, these translations are manually chosen
by analysts as a part of the configuration data that defines
a source. However, we also plan for a set of regular expres-
sion rules to suggest potential source-specific to general label
links. And the meta data of specific analysis attempts (col-
lected via Scry Meta, discussed later) may be used to iterate
over potential specific to general translations and suggest
the best set of links (perhaps by looking at the outcomes,
accuracy, precision, etc. of the applied analysis model). Al-
though it is our expectation that in most cases using meta
analysis instead of manual label linking will not be desirable
in terms of time and computing resources when compared
against any likely outcome gains.

The data translation described above is done with the
Obsidian portion of our data description and modeling lan-
guage. The initial language design consists of a JSON schema
that outlines a source’s data structures and two sets of tags
that perform the data translation - mappings and markers.

Mappings represent a generic modeling of relevant elements
within the organization of the source data as well as the at-
tributes that describe those elements. By organization here
we are referring to the source’s grouping of the data into ta-
bles, collections, etc. Specific data items within the source
that are likely to be extracted and used within Foreseer are
also highlighted. This set of tags are called markers. Mark-
ers are used to build detailed views of entities independent
of the structure of the source or sources from which they
are derived. Markers do not necessarily correspond to the
organization of data within the originating source.

These concepts may be difficult to visualize; but take for
example, the case of a source with two tables - one for users
and one for posts. The users table would likely be tagged
with a mapping element of identity while the posts table
would probably be tagged as a message element. The users
table might have a field of user that could be mapped to an
attribute of name and might also be tagged with a marker
of username. The posts table might have a field for the date
created and another called user-id. The date-created field
would correspond to a mapping attribute of created but also
a marker of time-active (to indicate times the user was ac-
tive online). The user-id field would likely translate to an
attribute of author. This author mapping would not have
a direct marker, but instead should refer to the field in the
users table that has a mapping attribute of id (essentially
describing a foreign key relationship). That cross table ref-
erence would allow joining together relevant markers in posts
with those in users. To summarize, attributes apply to a Ob-
sidian element that has been mapped from the raw source.
On the other hand, markers apply to an identity created
from analysis results and located in the Foreseer database.
Essentially, Obsidian resolves schema conflicts between two
sources by mapping them to the framework data abstrac-
tion. Initial versions of Obsidian have already been used to
translate and interpret the sources of Twitter, Reddit, and
StackExchange.

3.3 Scry
The final stage in the data pipeline is the actual data

analysis itself, handled by the Scry component. This frame-
work module uses the analysis portion of our custom lan-
guage to define processing steps to be run (and re-run) as
needed. The initial trials of this component used Obsidian
tags within commands. Although source-specific Seer tags
are also supported. Seer sources and Obsidian translation
are designed to be configured either by the Foreseer com-
mand shell or by JSON configuration files. Configuration
commands entered in the shell will update the central config-
uration database. If a JSON file is used, it is opened, parsed
and copied into the database when either a Foreseer service
is started or a file load command is issued. Unlike Seer and
Obsidian, Scry is manipulated via the Foreseer shell; and, as
such, the main focus of shell development has been for Scry
operations. Scry scripts (rulesets) are built from a series of
one or more steps (rules), each issuing a Foreseer command.
Once a ruleset is created, specific instances may be started,
stopped, and monitored at will. In addition to predefined
rulesets, the shell allows direct parsing of Scry commands
for on-the-fly analysis tasks.

A range of analysis commands have been planned out,
but in the first phase the only command sufficiently imple-
mented to provide reliable results was match. Match takes

three parameters. The first is an array of field references in
Seer or Obsidian format of source-name.location-name.table-
name.field-name. Depending on the source, table could also
be synonymous with collection or element ; and field synony-
mous with marker or attribute. Special selector values exist
for each identifier position to allow for use of all or a sub-
set of sources. For example, location names can be a specific
source location or a format type (i.e. mysql, mongo, api, etc).
The second parameter of match is an array of restrictions on
how the operation is done. These include qualifiers such as
one-to-one (only include matching of one field to one other),
diff-src-match (match field values only to field values from
other sources, not within a single source), and limit (stops
matching after some given number of matches are found).
The final parameter of match is an array of restrictions ap-
plied to input data before matching is attempted). These
include limit (restricts the number of records checked), filter
(similar to the WHERE x = y SQL statement), and order-by
(controls the ordering of items evaluated).

Other Scry commands being implemented include sub-
match (partial value matching), timematch (used to eval-
uate the times that entities are active or have existed), and
wordfreq (basic word frequency analysis of user created text).
Other future commands should include more advanced text
analysis such as word order and phrase usage, named en-
tity extraction (finding proper names of people, organiza-
tions, and places), social connections graphing, and behav-
ioral analysis beyond basic activity times.

For the initial phase of the project, Scry was implemented
using Python modules, and run against the data without any
distributed processing. However, our design outlines the use
of Apache Spark for processing. Spark has gained a signifi-
cant amount of traction in the data science community since
its inception, and it should enable Scry to process massive
data sources in parallel across clusters of machines. Addi-
tionally, running the framework on top of Spark should allow
us to easily scale out the data processing capacity by adding
more servers and worker nodes to the Spark cluster.

Scry also includes a component that we call Scry Meta.
Scry Meta is designed to be fed from the Foreseer Meta
data store, which is in turn fed from the Seer, Obsidian,
and Scry services. Scry Meta (SM) digests information re-
ceived from these components, such as what mappings were
created, what users used what fields, which analysis com-
mands are used by which users, what the outcome metrics of
this analysis were, how each framework user labels and com-
ments on elements they create, and other various meta data
about the entire Foreseer process. Scry Meta then attempts
to learn from this data in order to suggest updates to the
Foreseer configuration. These updates might entail adjust-
ing field mappings, prioritizing certain source data elements
when pulling from the internet, adjusting performance and
scaling settings in the system, and changing other configura-
tion values that may lead to process improvements. Overall,
the Scry Meta component should have the potential to allow
us or other users to learn how we build tasks using the sys-
tem and perhaps make the process of analysis more accurate,
responsive, and relevant.

3.4 Data Storage
The data storage of Foreseer is key to maintaining anal-

ysis results, configurations, meta data on each component’s
process, and locally-stored raw source data. We use a com-

bination of HDFS, MongoDB, and MySQL; but with data
access in code designed in a modular manner that allows ex-
tension to support other storage systems. Since Scry utilizes
Spark for identity analysis, HDFS is used for its persistent
storage. HDFS can store anything from raw JSON or text
to Apache Hive tables and serialized Python objects. Cur-
rently, HDFS is responsible for storing intermediate analysis
data that is still in process, finished analysis data as long as
desired, and anything that we may want to cache for com-
putation with Spark. In MongoDB and MySQL we store
raw source data (local data in Figure 1), configuration data
and long-term result data.

As of now, our unparsed Twitter and Reddit data is stored
in MongoDB as BSON (MongoDB’s JSON equivalent, i.e.
Binary JSON). From there, we do filtering and extraction of
the data elements into structured tables in MySQL. We also
use MySQL for storing the Foreseer configurations. Every
component in the system pulls from the Foreseer Config-
uration tables to know how to set up their environment,
perform processing, chose which fields of raw data to use,
and more. This allows us to isolate the framework set-
tings from each component, and more easily build an ar-
chitecture where each component runs as a service and can
pull the most updated configuration values from one central
place. Our design permits consistent scaling as the num-
ber of Seer, Obsidian, or Scry instances may be increased
across many physical or virtual machines without having to
worrying about conflicting settings on each instance. Re-
gardless of the user shell or component service updating the
configuration, the changes will occur in one physical loca-
tion. Each component also caches the latest configuration
locally for use if the data store for the Foreseer configuration
is inaccessible.

In MySQL we also keep the Foreseer Meta tables. These
tables store statistics, meta data, and other framework traces
that may lead to insights in how users are building on the
system and their use of the shell, DSL, and other elements.
This data can be pulled and analyzed with the Scry Meta
component to attempt to learn how to best adjust the pa-
rameters of the entire system to facilitate a more optimized
analysis process both overall and per user.

4. RESULTS
For the first phase of this project only the Match com-

mand was implemented sufficiently to allow for actual data
analysis results. The match operation was run against the
three initial sources using StackExchange’s DisplayName field,
Reddit’s name field (in the users table), and both Twitter’s
ScreenName and Name fields. For this analysis run, po-
tential matches were not assessed from within each source -
only inter-source matches were considered. StackExchange
in particular had a large number of duplicate display names
due to the fact that no unique constraint was applied and
due to StackExchange’s structure that utilized a separate
user record for each of their sites that a user has ever used.
Even among Twitter users there were still a number of du-
plicates for common names. So, in order to increase the
likelihood of quality results, names with more than 10 du-
plicates per source were excluded from matching. Reddit, on
the other hand, enforces uniqueness on their name field, so
no duplicates were present. Capitalization was ignored for
all fields, but non alphanumeric characters were considered.

The number of users usable for each site varied widely.

Table 1: Match results by site (TwSN: Twitter
ScreenName; TwN: Twitter Name)

. StackEx Reddit TwSN TwN

Values 3,948,845 241,958 2,492,872 1,985,172
Matches 75308 2734 4237 71071

SE - 1367 3588 70353
Reddit 1367 - 649 718
Tw SN 3588 649 - -
Tw N 70353 718 - -

These numbers are summarized in Table 1. Reddit had
241,958 imported users, all of which had unique names.
Twitter had 2,492,872 users all of which were unique in their
ScreenName, but only 1,985,172 distinct values were present
in the Name field. StackExchange had 8,045,089 Display-
Names, but only 3,948,845 were distinct. The statistics on
the final results of this matching run were 83169 matches.
Of these, 73941 were between StackExchange and Twitter
with 7861 between Twitter and Reddit and 1367 between
StackExchange and Reddit. Among the StackExchange and
Twitter matches, 70353 came from the Twitter Name field
and only 3588 from the Twitter ScreenName field. Among
Reddit and Twitter matches, 718 came from Name and 649
from ScreenName.

It seems highly likely, based on these results, that the
larger number of matches between StackExchange and the
Twitter Name field are due to the lack of unique constraints.
The oversized volume of matches suggests that those results
may not be of the highest quality. However, spot checking
suggests a more nuanced situation. First, some duplicates
may be explained by the significant minority of accounts
found to be disabled or deleted. This would include older
accounts that were removed and then recreated. Second,
much of the duplicate clustering on the StackExchange side
comes from different StackExchange sites, but actually re-
flects the same account. On the other hand, most of the
twitter duplicates do seem to be different people. However,
the impact of this on the value of the Twitter data seems
minimal as only one of those users needs to be the same
person as the StackExchange user for the match to be valid.
Duplicate groupings were counted as a single match in the
overall statistics. Besides the enforcement of uniqueness and
the larger pools of imported users, the higher numbers for
Twitter and StackExchange may also be partly due to dif-
ferences in the way users approach those sites. Both seem
to be utilized by those who are concerned about their online
reputations (either professional or personal) and the cultures
of both sites seem to encourage sharing real details about
oneself. On the other hand, Reddit appears to be heavily
attended by those who wish to remain anonymous or at least
not share any specific details about their lives.

5. FUTURE WORK
We will continue to develop the key components of the in-

frastructure, adding novel analysis methodologies and appli-
cations. More specifically, we will start from implementing
the domain-specific data description and analysis language
and proceed to devise approaches for analyzing cross-domain
data sources, creating modifiable configurations for the sys-
tem’s behavior, implementing natural language processing

and machine learning algorithms more extensively in Scry
commands, building a more robust statistics capability into
the framework to easily provide confidence scores, and im-
plementing a web front end with result visualizations. Addi-
tionally, we will be continuing integration of Apache Spark
as the back end to power the analysis primitives in Fore-
seer DSL and the underlying processing of entities by Scry.
Among our targeted features and work to be done is mak-
ing Foreseer ”privacy-respecting”. We will attempt to ensure
that both open data and custom ”plugged-in” data sources
ingested by the system anonymize personal identities to up-
hold the privacy standards required by the domain of the
specific data source being ingested. Our ultimate goal will
be exploring specific applications that can be built on top
of this framework using the linking methods provided, such
as analyzing malicious code commits in public repositories
and linking the authors back to their information across the
web, and analyzing privacy preservation properties of the
anonymization algorithms when auxiliary data sources are
added.

6. CONCLUSION
In this paper we have presented a framework to support

the task of linking identities and attributes among hetero-
geneous data sources. The three core components of this
framework - Seer, Obsidian, and Scry - work together to pro-
vide an extensible foundation for building data science appli-
cations that should be flexible enough to support project re-
quirements ranging from a researcher’s quick academic query
to an organization’s strategic software systems. Early frame-
work results from simple matching across data sources were
not overwhelming, but they provided a reasonable start-
ing point for more innovative analysis and helped guide the
framework development. The progress already seen is likely
only the beginning of Foreseer’s potential, and it will require
significant effort and likely traversal of many more technical
and theoretical hazards before it is fully realized.

7. REFERENCES
[1] Apache Software Foundation. Apache crunch, January

2016. https://crunch.apache.org/.

[2] Apache Software Foundation. Apache spark -
lightning-fast cluster computing, January 2016.
https://spark.apache.org/.

[3] Apache Software Foundation. Apache storm, January
2016. https://storm.apache.org/.

[4] Apache Software Foundation. Hive, January 2016.
https://hive.apache.org/.

[5] Apache Software Foundation. MapReduce tutorial,
January 2016.
https://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html.

[6] Apache Software Foundation. Welcome to apache
hadoop, January 2016. https://hadoop.apache.org/.

[7] Apache Software Foundation. Welcome to apache pig,
January 2016. https://pig.apache.org/.

[8] E. D. R. H. K. R. R. G. Aylin Caliskan-Islam,
Fabian Yamaguchi and A. Narayanan. When coding
style survives compilation: De-anonymizing
programmers from executable binaries. 2015.

[9] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and
S. Trani. Dexter: An open source framework for entity
linking. In Proceedings of the Sixth International

Workshop on Exploiting Semantic Annotations in
Information Retrieval, ESAIR ’13, pages 17–20, New
York, NY, USA, 2013. ACM.

[10] Concurrent, Inc. Cascading | application platform for
enterprise big data, January 2016.
http://www.cascading.org/.

[11] O. de Vel, A. Anderson, M. Corney, and G. Mohay.
Mining e-mail content for author identification
forensics. SIGMOD Rec., 30(4):55–64, Dec. 2001.

[12] M. Goeminne and T. Mens. A comparison of identity
merge algorithms for software repositories. Sci.
Comput. Program., 78(8):971–986, Aug. 2013.

[13] J. Golbeck and M. Rothstein. Linking social networks
on the web with foaf: A semantic web case study. In
Proceedings of the 23rd National Conference on
Artificial Intelligence - Volume 2, AAAI’08, pages
1138–1143. AAAI Press, 2008.

[14] P. Jain, P. Kumaraguru, and A. Joshi. @i seek ’fb.me’:
Identifying users across multiple online social
networks. In Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13
Companion, pages 1259–1268, Republic and Canton of
Geneva, Switzerland, 2013. International World Wide
Web Conferences Steering Committee.

[15] M. G. Julius Volz, Christian Bizer and G. Kobilarov.

Silk âĂŞ a link discovery framework for the web of
data. In 2nd Workshop about Linked Data on the Web,
April 2009.

[16] A. Malhotra, L. Totti, W. Meira Jr., P. Kumaraguru,
and V. Almeida. Studying user footprints in different
online social networks. In Proceedings of the 2012
International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2012),
ASONAM ’12, pages 1065–1070, Washington, DC,
USA, 2012. IEEE Computer Society.

[17] A. Mockus. Succession: Measuring transfer of code
and developer productivity. In 2009 International
Conference on Software Engineering, Vancouver, CA,
May 12–22 2009. ACM Press.

[18] D. Perito, C. Castelluccia, M. A. Kaafar, and
P. Manils. How unique and traceable are usernames?
In Proceedings of the 11th International Conference on
Privacy Enhancing Technologies, PETS’11, pages
1–17, Berlin, Heidelberg, 2011. Springer-Verlag.

[19] A. Weichselbraun, D. Streiff, and A. Scharl. Linked
enterprise data for fine grained named entity linking
and web intelligence. In Proceedings of the 4th
International Conference on Web Intelligence, Mining
and Semantics (WIMS14), WIMS ’14, pages
13:1–13:11, New York, NY, USA, 2014. ACM.

[20] R. Zafarani and H. Liu. Connecting users across social
media sites: A behavioral-modeling approach. In
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’13, pages 41–49, New York, NY, USA, 2013.
ACM.

[21] R. Zheng, J. Li, H. Chen, and Z. Huang. A framework
for authorship identification of online messages:
Writing-style features and classification techniques. J.
Am. Soc. Inf. Sci. Technol., 57(3):378–393, Feb. 2006.

