
DEMO: Akatosh: Automated Cyber Incident Verification and
Impact Analysis

Jared M. Smith
Oak Ridge National Laboratory

University of Tennessee, Knoxville
smithjm@ornl.gov

Elliot Greenlee
Oak Ridge National Laboratory

University of Tennessee, Knoxville
greenleeed@ornl.gov

Aaron Ferber
Oak Ridge National Laboratory

ferberae@ornl.gov

ABSTRACT
Akatosh, a U.S. Department of Homeland Security Transition to
Practice Program (TTP) project developed by Oak Ridge National
Laboratory with industry and academic partnership, enables au-
tomated, real-time forensic analysis of endpoints a�er malware-
a�acks and other cyber security incidents by automatically main-
taining detailed snapshots of host-level activity on endpoints over
time. It achieves this by integrating intrusion detection systems
(IDS) with forensic tools. �e combination allows Akatosh to collect
vast amounts of endpoint data and assists in verifying, tracking,
and analyzing endpoints in real time. �is provides operations
personnel and analysts as well as managers and executives with
continuous feedback on the impact of malicious so�ware and other
security incidents on endpoints in their network.

CCS CONCEPTS
•Security and privacy →Malware and its mitigation; Intru-
sion detection systems; Operating systems security;

KEYWORDS
Incident Response; Forensic Analysis; Endpoint Security; Breach
Remediation

1 INTRODUCTION
While Intrusion Detection Systems (IDS) can help prevent a�acks
on a system, they also incur a higher than desired false positive
rate. When a cyber a�ack happens to break through an IDS or
other defensive system, the e�ort of performing an analysis of the
a�ected systems and the recovery from any potential infections
is costly and time-consuming. Developed at Oak Ridge National
Laboratory (ORNL), Akatosh is a highly con�gurable system based
on the integration of the capabilities of one or more IDS�s and
automated con�guration and system veri�cation.

With this integration, it is possible to analyze systems in near
real-time and provide operations and forensic analyst personnel
with continuous feedback on the impact of so�ware, malware,
and active users on deployed systems. By providing an interface
between any number of IDSs and the Akatosh client, Akatosh is
able to intelligently �snapshot� a�ected systems based on cues

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS’17, October 30–November 3, 2017, Dallas, TX, USA
© 2016 Copyright held by the owner/author(s). ISBN 978-1-4503-4946-8/17/10.
DOI: h�p://dx.doi.org/10.1145/3133956.3138854

from the IDS. Before incidents, Akatosh takes regularly scheduled
snapshots to account for states of the system over time. With
these snapshots, it can automatically provide a succinct report
on the Akatosh server by di�erentiating these previous known
states and post-infection states based on the timing and metadata
associated with IDS noti�cations to the client interface. With the
di�erentiated states from any point in the history of the machine,
Akatosh helps point out whether a true infection occurred, and
if so, what was impacted, thus lowering the false positive rate of
modern IDS products. With this data, it is also possible to analyze
trends over time in a�acks and come closer to conclusions on why
a system was a�acked.

Akatosh is a U.S. Department of Homeland Security (DHS) Tran-
sition to Practice program (TTP) project, and is one of eight tech-
nologies in the DHS TTP 2017 class being developed and led by
industry and academic institutions such as MIT Lincoln Laboratory,
MITRE, Worcester Polytechnic University, and Paci�c Northwest
National Laboratory. �rough the DHS TTP program, we are work-
ing with industry partners to pilot the this technology, demonstrate
it’s capabilities at industry ”demo days” in major international hubs,
and ultimately license the research technology to partners with the
goal of being integrated into production systems serving real users.

2 BACKGROUND
In practice, forensic analysts and other operations personnel face
two distinct and important problems. In the realm of computer secu-
rity defense mechanisms, IDSs consume information like network
packets, endpoint statistics, and other metrics that the IDS uses to
pick out anomalous behavior, which potentially represent cyber at-
tacks. Unfortunately, IDSs have high false alert rates and the sheer
number of alerts over time can overwhelm security operations per-
sonnel, which makes correctly identifying actual a�acks di�cult.
Another problem faced by enterprises can be seen in a 2016 study
by IBM and the Ponemon Institute [11], which found that among
383 companies, the cost of incident response and mitigation for a
successful cyber a�ack accounted for 4 million USD on average
per incident. over a quarter of the total cost was due to forensic
activities associated with the breach. �is cost largely comes from
having to verify endpoint state and conduct forensic analysis a�er
alerts from endpoints indicate that they were potentially impacted
by an a�ack or related security incident.

3 SYSTEM DESIGN
System Architecture Akatosh starts by reducing the impact of
false positives and the cost of incident response by enabling au-
tomated, real-time forensic analysis of endpoints when prompted

Demonstration CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2463



Figure 1: High-level architecture diagram for Akatosh.

Figure 2: Step-by-step explanation of the Akatosh endpoint
snapshot and real-time analysis process.

by IDS alerts. By doing these this, Akatosh helps operations per-
sonnel verify that an alert on an endpoint corresponds to a true
cyber-a�ack. �e system is comprised of small Akatosh client or
agent, the Akatosh server, and the Akatosh dashboard, as depicted
in Figure 1. �e Akatosh clients live on network endpoints and
take regularly scheduled baseline snapshots on con�gurable time
intervals to record endpoint state over time.

�ese snapshots capture speci�c data about the endpoint, includ-
ing processes, loaded drivers, registry entries, network connections,
and other data. When an IDS detects anomalous behavior it alerts
the Akatosh system. Depending on the nature of the alert (con-
�gured by the operators), the Akatosh client immediately takes a
snapshot of the endpoint that generated the alert and sends the
snapshot to the Akatosh server. �e Akatosh server automatically
produces a succinct incident report di�erentiating the post-alert
snapshot from the most recent baseline snapshot. �e Akatosh
dashboard displays all endpoints being tracked, their status, the
snapshot data being collected as the system receives IDS alerts, and
the incident reports.

Figure 2 summarizes the underlying process described above.
Akatosh automatically analyses the di�erences between pre-alert
and post-alert snapshots in real-time and displays the results on
the dashboard, showing the speci�c endpoint components a�ected
by the anomalous behavior.
Time-Series State Di�erentiation Akatosh analyzes the paral-
lel historical timeline of memory images for each client machine

in order to provide insight into machine state di�erences. �e
majority of these images will re�ect daily activity without a mali-
cious presence, but this timeline also captures the critical period
following an IDS alert. Consider the memory image taken before
and just a�er such an alert; the apparent di�erences shed light
on new �les, processes, and a multitude of other system changes
caused by possible malicious activity. In order to analyze the images,
Akatosh integrates with existing memory forensics tools Volatility
and Rekall [6, 8]. �ese two frameworks combine individual plugins
for extracting various well-known operating system state data to
provide a comprehensive view of machine memory. An example
of a plugin would be the processes running on the machine, or
the active and recently ended network connections. Akatosh then
performs state di�erentiation across each plugin in order to pin-
point di�erences across images. By displaying these di�erences to
forensic analysts, our system provides detailed context and a frame
of reference which intends to speed up the process of recovery a�er
an a�ack.
Classi�cation of State Di�erences Using state di�erentiated im-
ages before and a�er a period of time, a classi�cation can be made
between detecting or not detecting malicious activity. Rather than
examining the images themselves or other behavioral information,
our system analyzes two kinds of state transitions: clean to clean
and clean to infected. As forensic experts investigate alerts using
the Akatosh system, a determination is made between real and
false. �is expert knowledge can be captured through classi�cation
algorithms. In order to produce a sample data set equivalent to this
real knowledge, we capture machine state while infecting systems
with malware. �is process is performed programatically using
Cuckoo Sandbox [3], an open source malware analysis system, to
inject malware from online repositories and ORNL resources into
virtual environments running so�ware to approximate human be-
haviors like opening and closing so�ware, navigating the internet,
and sending emails [19]. �is programmatic collection of machine
images before and a�er so�ware and malware has run on a system
gives us a working dataset of images with which to feed through
Akatosh.

Using this dataset we can perform feature extraction and a clas-
si�cation method survey. Hand-coded feature extraction per plugin
is possible but knowledge and time intensive. �is approach allows
for pre-analysis using linear discriminant analysis to determine the
plugins that contribute most to overall classi�cation accuracy, guid-
ing initial ordering of plugin results on the Akatosh system [12].
More generally, standard natural language pre-processing tools
like bag of words and n-gram extraction can be co-opted to �t this
type of document [20]. Our method survey covers standards in
document classi�cation such as naive bayes, expectation maximiza-
tion, support vector machines, and decision trees [1] [18] [15]. �e
results of these are combined using classi�er fusion to produce
a binary recommendation with a speci�c con�dence [16]. A�er
the model crosses a pre-determined con�dence threshold, Akatosh
begins to make recommendations to analysts in two areas. Overall,
the algorithm recommends high-con�dence real alert predictions
higher in the queue of new IDS alerts. For individual clients, the
algorithm presents high-con�dence real alert plugin results higher
so that analysts can more quickly check these indicators. �rough

Demonstration CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2464



these recommendations, the overall time to recovery of an impacted
machine is reduced.
Implementation Akatosh is implemented in Python [5], which
allows the system to run on Windows, Linux, and Mac-based OSs.
As stated earlier, Akatosh utilizes Volatility and Rekall [6, 8] for
extracting machine state data from images. To capture images
from machines, Akatosh uses the Rekall Memory Forensic Suite of
imaging tools, which are used in other frameworks such as Google’s
GRR [7]. To store data on the server, Akatosh uses a combination
of the ba�le-tested relational database, PostgreSQL, and a static �le
storage system, Minio, based on Amazon S3 [9, 13].

4 EVALUATION
CanWe Scalably Collect Full State Captures fromHundreds
of Endpoints? Akatosh can collect memory images of nearly any
practical size (tested up to 64 GB) in less than 30 seconds for 16 GB
images. Akatosh stores no data on client machines, as it transfers
the images as they are captured. In the varying network conditions
tested (between 10-1000 Mbps upload speeds), the transfer speed
is bounded only by the speed at which memory can be captured.
When images are stored on the server, images are encrypted with a
2048-bit key using the AES algorithm. Additionally, up to 60% on
average of the original memory size can be compressed due to the
nature of the image format, thus reducing 16 GB image captures to
less than 8 GB when stored in Minio.

With respect to client performance overhead incurred due to
imaging, no noticeable slowdowns can be seen from the client, and
in our testing we saw no more than 10 to 30% CPU usage to image a
machine. Finally, Akatosh currently scales up to 150+ machines and
can load balance image capturing and state di�erentiation analysis
e�ectively for a variety of clients, including Windows, Linux, and
Mac.
CanWe SurfaceDeeper Context to ExistingAlertswith State
Di�erences? �e work described in the prior section on classi�-
cation of memory di�s is still under active development; however,
Akatosh has been tested against several pieces of historically signif-
icant malware, and has identi�ed all of the components the tested
malware was known to a�ect on client machines. �e components
known to be a�ected were pulled from a variety of published write-
ups on the malware. �e malware tested consisted of the Dark-
Comet Trojan, the NJRat Trojan and Reverse Shell, and Stuxnet.

�ese results indicate that when Akatosh is alerted to an infec-
tion on a system where malware has infected the host in question,
our system can identify the a�ected components and bring them
to the a�ention of the incident response personnel. Future work
remains to be done to test Akatosh against vast amounts of other
malware and so�ware, though early results are promising.

5 RELATEDWORK
Akatosh is the �rst of its kind system to integrate automated foren-
sic analysis with IDSs. �rough this integration, Akatosh can per-
form a detailed analysis of the a�ected endpoints at the exact time
of the incident, unlike current incident response systems, which
are less reactive to immediate changes in endpoint state, at least at
the level of detail that Akatosh provides.

Additionally, the Akatosh dashboard automatically provides re-
ports showing a high-level overview of a�ected endpoint compo-
nents that operations personnel and analysts as well as managers
and upper-level executives can understand and dig into. Reports are
generated in real-time without shu�ing down endpoints to perform
the tedious task of imaging the machine and analyzing the image
on a separate machine. Similar products in the space do not provide
di�erentiated endpoints states to operations personnel [2, 10], and
may also require manual analysis of endpoints causing analysts to
shut down machines before examining their state [4].

While products exist to perform endpoint history analysis for
non-security related domains, such as infrastructuremonitoring [14,
17], these products do not transition well to verifying, tracking,
and analyzing the impact of cyber a�acks. By focusing on a�ected
endpoint components, Akatosh assists in verifying incidents and
automatically tracking and analyzing propagation over the compo-
nents.

6 CONCLUSION AND FUTUREWORK
In this work we have presented a novel system developed to en-
hance context around existing alerts in modern security defense
systems, while allowing the scalability to potentially thousands of
machines and reducing the cost of mitigating breaches when they
inevitably occur. In the coming months, Akatosh will be undergo-
ing pilots at the U.S. Department of Energy HQ and MITRE, as well
as undergoing active development to �nish the full classi�cation
abilities of the system as well as continue to scale out to additional
clients.

REFERENCES
[1] Sonal Salve Swati Vamney Bhawna Nigam, Poorvi Ahirwal. 2011. Document

Classi�cation Using Expectation Maximization with Semi Supervised Learning.
(2011). h�ps://arxiv.org/abs/1112.2028

[2] CarbonBlack. 1999. (1999). h�p://www.carbonblack.com
[3] Cuckoo. 2017. Cuckoo. (2017). h�ps://cuckoosandbox.org/
[4] EndCase. 2017. EndCase. (2017). h�ps://www.guidanceso�ware.com/

encase-forensic
[5] Python So�ware Foundation. 2017. Python. (2017). h�ps://www.python.org/
[6] Volatility Foundation. 2017. Volatility. (2017). h�p://www.volatilityfoundation.

org/
[7] Google. 2017. GRR. (2017). h�ps://github.com/google/grr
[8] Google. 2017. Rekall. (2017). h�p://www.rekall-forensic.com/
[9] �e PostgreSQL Global Development Group. 2017. PostgreSQL. (2017). h�ps:

//www.postgresql.org/
[10] Tanium Inc. 1999. Endpoint Security and Systems. (1999). h�p://www.tanium.

com
[11] Ponemon Institute and IBM. 2017. Cost of Data Breach Study. (2017). h�ps:

//www.ibm.com/security/data-breach/
[12] et al. Mika, Sebastian. 1999. Fisher discriminant analysis with kernels. (1999).

h�p://ieeexplore.ieee.org/abstract/document/788121/
[13] Minio. 2017. Minio. (2017). h�ps://minio.io/
[14] PrometheusIO. 2017. PrometheusIO. (2017). h�ps://prometheus.io/
[15] J.R. �inlan. 1993. C4.5: Programs for Machine Learning. (1993). h�p://dl.acm.

org/citation.cfm?id=152181
[16] D. Ruta and B. Gabrys. 2000. An Overview of Classi�er Fusion Methods. (2000).

h�p://eprints.bournemouth.ac.uk/9649/
[17] Splunk. 2017. Splunk. (2017). h�ps://www.splunk.com/
[18] J.A.K. Suykens and J. Vandewalle. 1999. Least Squares Support Vector Ma-

chine Classi�ers. (1999). h�ps://link.springer.com/article/10.1023%2FA%
3A1018628609742?LI=true

[19] �eZoo. 2017. �eZoo. (2017). h�ps://github.com/ytisf/theZoo
[20] Hanna M. Wallach. 2006. Topic modeling: beyond bag-of-words. (2006). h�p:

//dl.acm.org/citation.cfm?id=1143967

Demonstration CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2465

https://arxiv.org/abs/1112.2028
http://www.carbonblack.com
https://cuckoosandbox.org/
https://www.guidancesoftware.com/encase-forensic
https://www.guidancesoftware.com/encase-forensic
https://www.python.org/
http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/
https://github.com/google/grr
http://www.rekall-forensic.com/
https://www.postgresql.org/
https://www.postgresql.org/
http://www.tanium.com
http://www.tanium.com
https://www.ibm.com/security/data-breach/
https://www.ibm.com/security/data-breach/
http://ieeexplore.ieee.org/abstract/document/788121/
https://minio.io/
https://prometheus.io/
http://dl.acm.org/citation.cfm?id=152181
http://dl.acm.org/citation.cfm?id=152181
http://eprints.bournemouth.ac.uk/9649/
https://www.splunk.com/
https://link.springer.com/article/10.1023%2FA%3A1018628609742?LI=true
https://link.springer.com/article/10.1023%2FA%3A1018628609742?LI=true
https://github.com/ytisf/theZoo
http://dl.acm.org/citation.cfm?id=1143967
http://dl.acm.org/citation.cfm?id=1143967

	Abstract
	1 Introduction
	2 Background
	3 System Design
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References



